News

Exploring limits in advanced LEDs and solar cells

Published

December 2, 2015

Comments

comments icon

0

Share

Published:

December 2, 2015

Comments:

comments icon

0

Share

Researchers from the University of Cyprus and Cyprus University of Technology, along with colleagues from the University of Crete in Greece, have conducted a comprehensive investigation on how various structural and electronic parameters affect a phenomenon called Förster resonant energy transfer (FRET) in structures of nitride quantum wells with light­emitting polymers, Phys.org news service reported.

Based on their studies, the scientists discuss the process to optimize the energy transfer process and identify the limitations and implications of the Förster mechanism in practical devices. The work demonstrates the importance of understanding FRET in hybrid structures that could pave the way for developing novel devices such as high-efficiency LEDs and solar cells. The researchers presented their work in a paper published in the Journal of Chemical Physics.

Hybrid optoelectronic devices based on blends of hard and soft semiconductors can combine the properties of the two material types, opening the possibility for devices with novel functionality and properties, such as cheap and scalable solution­based processing methods. However, the efficiency of such devices is limited by the relatively slow electronic communication between the material components that relies on charge transfer, which is susceptible to losses occurring at the hybrid interface, the report said.

FRET was recently theoretically predicted and experimentally observed in hybrid structures combining an inorganic quantum well with a soft semiconductor film. Förster resonant energy transfer is a radiationless transmission of energy that occurs on the nanometer scale from a donor molecule to an acceptor molecule. The process promotes energy rather than charge transfer, providing an alternative contactless pathway that avoids some of the losses caused by charge recombination at the interface.

“Pioneering theoretical and experimental work has demonstrated that energy can be efficiently transferred across hybrid semiconductors via the Förster mechanism. However, our understanding is not complete and many material and structural parameters affecting FRET in such hybrids remain unexplored. Our work employs for a first time a comprehensive approach that combines fabrication, theoretical modeling and optical spectroscopy to fully understand FRET in a nitride quantum wellpolymer hybrid structure,” said Grigorios Itskos, the primary researcher and an assistant professor from the Department of Physics at the University of Cyprus.

Related Articles

Bulgaria host renewable electricity plants on Luxembourg s behalf

Bulgaria to host renewable electricity plants on Luxembourg’s behalf

16 January 2026 - Bulgaria joined Finland as a host country for renewables projects funded by Luxembourg, under the RENEWFM program for 2026

Renewables account 99 Turkey net electricity capacity additions

Renewables account for 99% of Turkey’s net electricity capacity additions

16 January 2026 - Electricity capacity in Turkey reached 122 GW in 2025, of which 62% was from renewables, according to the SHURA Energy Transition Center

Young Energy Ambassadors; EU Commission website, 2025

From bystanders to partners: How to ensure the new Citizens Energy Package effectively engages EU citizens in a clean energy future?

16 January 2026 - EUSEW Young Energy Ambassadors explore how energy communities and community-benefit clauses can help citizens fairly join Europe’s clean energy transition.

croatia zagreb park ride mayor tomislav tomasevic

Croatia’s Zagreb to add new park & ride locations

16 January 2026 - Zagreb, the capital of Croatia, currently has only one operational park & ​​ride location, in the Borongaj neighborhood