Where we invest
Increasing footprint

- Central Eastern Europe
- SEMED
- Western Balkans
- Cyprus, Greece
- Turkey
- Armenia, Azerbaijan, Belarus, Georgia, Moldova, Ukraine
- Central Asia (incl. Mongolia)
- West Bank and Gaza
- Lebanon

Russia
Kazakhstan
Mongolia
Kyrgyz Republic
Tajikistan
Moldova
Jordan
Azerbaijan
Morocco
Belarus
Ukraine
Romania
Serbia
Kosovo
Bulgaria
Albania
FYR Macedonia
Armenia
Turkmenistan
Bulgaria
Estonia
Latvia
Lithuania
Poland
Slovenia
Croatia
Bosnia and Herzegovina
Montenegro
FYR Macedonia
Turkey
Greece
Cyprus
North Macedonia
Moldova
Georgia
Ukraine
Russia

West Bank & Gaza
Lebanon
Egypt
Jordan
Cyprus
Tunisia
Morocco
Central Asia
Cyprus, Greece
Turkey
Armenia, Azerbaijan, Belarus, Georgia, Moldova, Ukraine
Central Asia (incl. Mongolia)
West Bank and Gaza
Lebanon
Objectives for the Sector

- Increase energy efficiency and reduce environmental impacts
- Improved service levels
- Increased commercialisation, consumer control and consumption based billing

EBRD provides financing and works with operators and policymakers to improve the operational, environmental and financial performance of the DE sector.
Ulaanbaatar District Heating Project
Ulaanbaatar District Heating Project

Challenges

• Coldest capital city in the world - as low as -40°C
• ~1.5 million residents
• Rapid urbanisation
• Large informal housing districts without utilities - “ger” areas
• Ger residents heat and cook by burning coal, wood or waste in stoves and simple boilers
• Extreme levels of air pollution in winter
• Urgent need for additional DH transmission capacity

District heating is a lifeline for the city
Ulaanbaatar District Heating Project

DH in Ulaanbaatar
- Peak heating load of ~1960 Gcal/h (~2280 MWth)
- ~700,000 residents are supplied with DH
- Crucial for life in the city
- DH displaces inefficient, polluting local boilers

The Project and next steps
- US$ 15 million programme for extension and enhancement of transmission networks
- US$ 12 million programme focused on distribution and demand side
- CO2 reduction of ~190,000 tonnes per year
- Future-proof solution which allows for introduction of lower carbon sources
Abdali District Heating & Cooling

Major commercial, leisure and residential redevelopment in Central Amman based on green building technologies

Challenge

- Scare water availability for a large cooling plant
- Electrical supply constraints in a growing city

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Capacity</td>
<td>31,000 TR (110 MW)</td>
</tr>
<tr>
<td>Chilled Water Supply Temperature</td>
<td>4.4 ºC</td>
</tr>
<tr>
<td>Thermal Energy Storage Tank</td>
<td>80,000 m³</td>
</tr>
<tr>
<td>Heating Capacity</td>
<td>101 MW</td>
</tr>
</tbody>
</table>
Abdali Plant Overview

R717 Condensers
Forced Air Cooled
Stainless Steel Tubes
Aluminum finned

Evaporators
Stainless Steel and
Semi-Welded plate heat
exchanger

Scrubber
Water Type
VFD in ventilation fans to
regulate the air flow

Production pumps
5 on Duty + 1 Standby
Total flow: 7,140m³/h

Compressor units
Taylor Made Chillers designed
and fabricated in Aman’s
Workshop
2,500 TR Screw Compressor
High efficiency and reliability

Hot water

Chilled Water

STRATIFIED STORAGE TANK

Hot Water Pumps
4 on Duty + 1 Standby
Total flow: 1,550m³/h

Consumption Pumps
9 on Duty + 1 Standby
Total flow: 17,630m³/h

Boilers
Six of 16,000 kW
One of 5,000 kW
Dual Fuel & Gas Burners
Minimum Efficiency: 92%
Project Details

EBRD financing

- Loan of ~EUR 27 million (EUR 42 million EPC contract)

Project Benefits

- CO2 savings of ~15,000 tonnes per year
- ~40% energy savings
- Significantly reduced peak electrical demand
- Minimal water consumption
- Natural refrigerant (Ammonia)
- Lower cost heating and cooling
EBRD Finance € 8.35 million
GHG Reduced 45,750 tonnes of CO₂ eq / yr

Supporting the City of Banja Luka for the purchase of an equity stake in a new district heating Company ‘Eko Toplane’.

- New 49 MW biomass boiler plant replacing heavy fuel oil based capacity
- Green City Action Plan preparation
- City adopted a new tariff structure
Drone Based Thermal Imaging

- 2nd project under development focused on network modernisation and smart control
- EBRD and Eko Toplane launched a drone based thermal survey
- Flew drones fitted with high-res infrared cameras over the DH network
- Data is mapped on an interactive web-based platform
- Plan the project network investments and optimise current operation
For all further enquiries, please contact:

Greg Gebrail
Sector Specialist – District Energy
Tel: +44 20 7338 7480
Email: gebrailg@ebrd.com

EBRD
One Exchange Square
London, EC2A 2JN, UK,
www.ebrd.com
City of Belgrade: District Energy Action Plan for Next 20 Years

Prof. Dejan Ivezic

Conference
Renewable energy sources in district heating and cooling systems
References

• PUC “Beogradske elektrane”, Development strategy for period from 2015 to 2025, with projections until 2035., 2016.

• City of Belgrade, Air Quality Plan for agglomeration Belgrade, 2016.

• City of Belgrade, Climate Change Adaptation Action Plan and Vulnerability Assessment, 2015.

Content

1. Development strategy of the Belgrade district heating system
2. Short term action plan of infrastructural development until 2030
3. Long term action plan of infrastructural development for 2030-2040 period
4. Summary tables
Short term action plan of infrastructural development until 2030

- Construction of waste-to-energy CHP facility at the Vinča waste management center
- Construction of heat pipeline from TPP “Nikola Tesla A” (TENT-A) to HP Novi Beograd,
- Shutting down of selected heat sources,
- Construction of CHP facilities,
- Network interconnection,
- Systematic replacement of heat pipelines

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Conditions for realization</th>
<th>State of realization</th>
<th>Expected effects</th>
<th>Financing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Waste-to-energy CHP facility at the Vinča waste management treatment and disposal center

- CHP regime: 20.6 MW_{el.} and 56.5 MW_{th.}
- Connection to HP Konjarnik (DN 600, about 9 km)
- Priority for produced heat (base load source) during the whole heating season
- PPP 25 year, 300 million euro
- Heat transport system, 20 million euro, PUC „Beogradske elektrane“
- 2022, system in operation
Heat pipeline
TPP “Nikola Tesla A” (TENT-A) - HP Novi Beograd

- 600 MWth. in HP Novi Beograd (power losses app. 150 MW), 29 km, DN1000
- Priority for produced heat (base load source) during the whole heating season
- In the preparatory phase of realization (an annex to the agreement on the construction has been signed with the contractor, the Power Construction Corporation of China, negotiations about the credit for the financing of the project)
- 193,5 million euro, 3 years for realization
- Increasing security of supply
- Analysis of influences of possible introduction of EU Emission Trading Scheme
Shutting down of selected heat sources

• Continue the shutting down of several heat sources, primarily ones operating on heat oil or coal, as well as the ones with pollution levels above ELV, or those that require large investment in maintenance of technical-technological level.

• Heat plants Banovo brdo (TENT A) and Zemun are in plan to be shut down by 2022

• More than 1,200 boiler stations were closed in last decades (23 heat sources or 70.16 MWth after 2015). In addition, Secretariat for Environmental Protection financed shutting down of several individual boilers in schools, kindergartens, public institutions, etc.

• Achieved effects: annual reduction of CO₂ emission for approximately 500.000 t and reduction of emissions of particles, SOx, NOx and other pollutants.
Construction of CHP facilities

- CHP in HP Voždovac, 10 MW_{el}. 10 MW_{th}, natural gas, 2020
- Priority for produced heat (base load source) during the whole heating season - SHW
- Similar CHP facilities within other HP (Cerak, Dunav, Novi Beograd) should be examined, primarily those that provide SHW.
- Energy efficiency over 85%; possibility to obtain the status of privileged producer
Network interconnection

- Interconnection of Novi Beograd (NB) and Zemun (ZE) networks; shutting down HP Zemun

- Interconnection of Novi Beograd, Dunav and Konjarnik networks (plans for networks expansion are taken into consideration, integration of over 80 MW\textsubscript{th} of new consumers)

- Interconnection of Novi Beograd, Dunav and Konjarnik is closely connected to project of construction of heat pipeline TPP “Nikola Tesla A” (TENT-A) - HP Novi Beograd

- Positive effects to security of supply, economy of operation, local environment

- Prefeasibility study on interconnection within the District Heating System of the City of Belgrade
Systematic replacement of heat pipelines

• “Program for rehabilitation of distribution system of PUC Beogradske elektrane” covers the period from 2017 to 2021

• Replacement of at least 30 km of pipeline route per year

• Selected priority sectors are Cerak and Novi Beograd

• 10-12 million euro per year; In accordance with the signed Contract, the City of Belgrade should use funds from the network usage fee for maintenance and investments

• The goal is to reduce energy losses by 20% by 2025 in comparison to 2015
Long term action plan of infrastructural development for 2030-2040 period

Transformation to 4th generation district heating system

Long term action plan of infrastructural development for 2030-2040 period

• Improvement of consumers characteristics - reduction of specific heat load
• Utilization of solar energy
• Utilization of geothermal energy
• Utilization of treated water from wastewater treatment facilities
• Expanding of network and building of new heat sources
Utilization of solar energy

• Annual solar radiation amounts 1300 kWh/m²
• Low average return temperature (which is in the range of 43 to 45°C, depending on the heating area) and low outflow temperature (which practically does not exceed 95°C) indicate the possibility for integration of solar thermal systems.
• Initial locations: Cerak, Batajnica and Novi Beograd.
• Identification of appropriate locations and evaluation of land availability for solar thermal collectors, with the respect to the vicinity of the network; Feasibility study and optimization of the size of facilities
Utilization of geothermal energy

• The estimated total energy potential of underground waters at Belgrade urban core is 1.200 MW. The accumulated heat power at less-populated surrounding territories is around 1.100 MW. The total available power at the Belgrade metropolitan area is estimated to 2.300 MW.

• The temperature of the underground waters in depths up to 300 m does not exceed 30°C.

• Defined potential hydro-geothermal energy areas are, as follows: Novi Beograd, left bank of Danube, Zemun and Bežanijska kosa, central areas of Belgrade hillside (from Kalemegdan and across Tasmajdan and Slavija to Dedine), Vinča, Leštane i Boleč.

• The risks and capital costs are concentrated in the early phases of geothermal heating projects realization. Therefore, the availability and the quality of geothermal energy sources can be proved only after finishing of initial drilling.
Heat pumps with treated water from wastewater treatment facilities as heat source

- The available potential of this energy source is about 380 kWh per capita per year (by using heat pumps for baseload)
- The development strategy of PUC "Beogradski vodovod i kanalizacija" envisaged 14 wastewater treatment facilities in Belgrade metropolitan area, which are all potential and accessible sources of continual heat during the entire year, which would enable an efficient operation of heat pumps.
- Selection of appropriate locations for heat pumps (vicinity and density of consumption); Feasibility study
About RES utilization

• Feasibility of renewable energy sources for heat production can be achieved if facilities operate continuously, during the whole heating season and cover baseload.

• The more favorable case is to use those facilities to produce sanitary hot water. This means their operation during the whole year.

• Therefore, projects for RES utilization should be considered, not separately, but together with all other planned projects.
Introduction of district cooling

• The size and concentration of consumption

• Using locally available energy sources (waste heat from industry or other processes, cold water from rivers and aquifers, etc.) that otherwise would not be used

• The new product at the energy market and highly efficient alternative to traditional solutions based on split systems.

• Envisioned building of new settlements at Ada Huja and Makiš, areas appropriate for heat pump applications opens an opportunity for consideration of district cooling in the early stages of design.
Expanding of network and construction of new heat sources

• Ada Huja, population 40,000, 2 million m²
 • M3 TO Dunav
 • HP Ada Huja i CHP

• Makiško polje, population 31,000, 4 million m²
 • Optimal for development of low temperature, centralized system for heat distribution, based on RES use

• SHW supply
Thank you!

dejan.ivezic@rgf.bg.ac.rs
SOLAR THERMAL POTENTIAL IN THE DISTRICT HEATING SYSTEM OF BELGRADE CITY

Dr. ROMANAS SAVICKAS

Renewable Energy Sources in District Heating and Cooling Systems
50th International HVAC&R congress and exhibition

DISTRICT ENERGY IN CITIES
A GLOBAL INITIATIVE TO UNLOCK THE POTENTIAL OF ENERGY EFFICIENCY AND RENEWABLE ENERGY
Structure (%) of Renewable Energy Potential in Serbia

<table>
<thead>
<tr>
<th>Type of RES</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>63%</td>
</tr>
<tr>
<td>Solar</td>
<td>14%</td>
</tr>
<tr>
<td>Wind</td>
<td>4.5%</td>
</tr>
<tr>
<td>Geothermal</td>
<td>4.5%</td>
</tr>
<tr>
<td>Hydro</td>
<td>14%</td>
</tr>
</tbody>
</table>

Dr. Romanas Savickas
ASSESSMENT OF SOLAR THERMAL IN CERAK, BELGRADE

- Cerak is located in Belgrade’s municipality of Čukarica;
- The population of more than 40,000 residents;
Climate Data for Belgrade

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average high °C</td>
<td>4.6</td>
<td>7.0</td>
<td>12.4</td>
<td>18.0</td>
<td>23.5</td>
<td>26.2</td>
<td>28.6</td>
<td>28.7</td>
<td>23.9</td>
<td>18.4</td>
<td>11.2</td>
<td>5.8</td>
<td>17.4</td>
</tr>
<tr>
<td>Daily mean °C</td>
<td>1.4</td>
<td>3.1</td>
<td>7.6</td>
<td>12.9</td>
<td>18.1</td>
<td>21.0</td>
<td>23.0</td>
<td>22.7</td>
<td>18.0</td>
<td>12.9</td>
<td>7.1</td>
<td>2.7</td>
<td>12.5</td>
</tr>
<tr>
<td>Average low °C</td>
<td>-1.1</td>
<td>-0.1</td>
<td>3.7</td>
<td>8.3</td>
<td>13.0</td>
<td>15.8</td>
<td>17.5</td>
<td>17.6</td>
<td>13.5</td>
<td>9.0</td>
<td>4.2</td>
<td>0.2</td>
<td>8.5</td>
</tr>
<tr>
<td>Average snowy days</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>33</td>
</tr>
<tr>
<td>Mean monthly sunshine hours</td>
<td>72.2</td>
<td>101.7</td>
<td>153.2</td>
<td>188.1</td>
<td>242.2</td>
<td>260.9</td>
<td>290.8</td>
<td>274.0</td>
<td>204.3</td>
<td>163.1</td>
<td>97.0</td>
<td>64.5</td>
<td>2,111.9</td>
</tr>
</tbody>
</table>
CERAK POWER PLANT

- Cerak power plant has been in operation since 1985;
- The capacity of 245 MW (2x58 MW + 116 MW gas water boilers, 2x6.5 MW oil steam boilers);
- Due to a new connections there is a potential to increase a future capacity;
- Heat is supplied to ~27,000 apartments (1,500,000 m²);
- Cerak heat plant has a site of about 76,000 m²;
SOLAR THERMAL POTENTIAL IN BELGRADE DISTRICT HEATING SYSTEMS

CERAK POWER PLANT

- **110 km** District Heating Network pipeline (Dn700/Dn600);
- Cerak heat plant has a site of about **75,900 m²**;
Solar Thermal Potential in Belgrade District Heating Systems

Renewable Energy Sources in District Heating and Cooling Systems
50th International HVAC&R congress and exhibition

Heat Energy Demand in Cerak

<table>
<thead>
<tr>
<th>Date</th>
<th>Heat demand, MWh 2017</th>
<th>Heat demand, MWh 2018</th>
<th>Average heat demand, MWh 2017-2018</th>
<th>Share from total heat demand in 2017-2018, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>41,265</td>
<td>51,327</td>
<td>46,296</td>
<td>19.0</td>
</tr>
<tr>
<td>Feb</td>
<td>32,281</td>
<td>53,845</td>
<td>43,063</td>
<td>17.6</td>
</tr>
<tr>
<td>Mar</td>
<td>24,380</td>
<td>45,078</td>
<td>34,729</td>
<td>14.2</td>
</tr>
<tr>
<td>Apr</td>
<td>13,865</td>
<td>10,213</td>
<td>12,039</td>
<td>4.9</td>
</tr>
<tr>
<td>May</td>
<td>3,188</td>
<td>3,116</td>
<td>3,152</td>
<td>1.3</td>
</tr>
<tr>
<td>Jun</td>
<td>2,369</td>
<td>2,630</td>
<td>2,499</td>
<td>1.0</td>
</tr>
<tr>
<td>Jul</td>
<td>1,992</td>
<td>2,659</td>
<td>2,325</td>
<td>1.0</td>
</tr>
<tr>
<td>Aug</td>
<td>2,042</td>
<td>2,147</td>
<td>2,094</td>
<td>0.9</td>
</tr>
<tr>
<td>Sep</td>
<td>2,488</td>
<td>2,337</td>
<td>2,412</td>
<td>1.0</td>
</tr>
<tr>
<td>Oct</td>
<td>13,663</td>
<td>11,470</td>
<td>12,566</td>
<td>5.1</td>
</tr>
<tr>
<td>Nov</td>
<td>29,620</td>
<td>36,018</td>
<td>32,819</td>
<td>13.4</td>
</tr>
<tr>
<td>Dec</td>
<td>45,724</td>
<td>54,437</td>
<td>50,080</td>
<td>20.5</td>
</tr>
<tr>
<td>Total</td>
<td>212,877</td>
<td>275,283</td>
<td>244,080</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Heat energy demand in Cerak

Year: 2017 - 2018
SOLAR THERMAL POTENTIAL IN BELGRADE DISTRICT HEATING SYSTEMS

Renewable Energy Sources in District Heating and Cooling Systems
50th International HVAC&R congress and exhibition

DISTRICT HEATING NETWORK SUPPLY AND RETURN TEMPERATURES IN CERAK

M1 Supply(℃) M1 Return(℃)
Solar Thermal Potential in Belgrade District Heating Systems

Heat Demand and Solar Heat Production per Solar Thermal Collector Area

<table>
<thead>
<tr>
<th>Date</th>
<th>Heat Demand 2018, MWh</th>
<th>Heat Product, KWh/m²</th>
<th>Heat Product, 10,000 m²</th>
<th>Heat Product, 31,800 m²</th>
<th>Heat Product, 35,000 m²</th>
<th>Heat Product, 39,700 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>51'327</td>
<td>16</td>
<td>163</td>
<td>518</td>
<td>570</td>
<td>647</td>
</tr>
<tr>
<td>Feb</td>
<td>53'846</td>
<td>31</td>
<td>312</td>
<td>992</td>
<td>1'092</td>
<td>1'239</td>
</tr>
<tr>
<td>Mar</td>
<td>45'079</td>
<td>45</td>
<td>447</td>
<td>1'420</td>
<td>1'563</td>
<td>1'773</td>
</tr>
<tr>
<td>Apr</td>
<td>10'214</td>
<td>51</td>
<td>506</td>
<td>1'609</td>
<td>1'771</td>
<td>2'008</td>
</tr>
<tr>
<td>May</td>
<td>3'117</td>
<td>72</td>
<td>719</td>
<td>2'286</td>
<td>2'516</td>
<td>2'853</td>
</tr>
<tr>
<td>Jun</td>
<td>2'631</td>
<td>79</td>
<td>786</td>
<td>2'500</td>
<td>2'752</td>
<td>3'121</td>
</tr>
<tr>
<td>Jul</td>
<td>2'659</td>
<td>81</td>
<td>805</td>
<td>2'559</td>
<td>2'816</td>
<td>3'194</td>
</tr>
<tr>
<td>Aug</td>
<td>2'148</td>
<td>78</td>
<td>780</td>
<td>2'481</td>
<td>2'731</td>
<td>3'098</td>
</tr>
<tr>
<td>Sep</td>
<td>2'338</td>
<td>57</td>
<td>574</td>
<td>1'825</td>
<td>2'009</td>
<td>2'279</td>
</tr>
<tr>
<td>Oct</td>
<td>11'470</td>
<td>41</td>
<td>411</td>
<td>1'308</td>
<td>1'439</td>
<td>1'633</td>
</tr>
<tr>
<td>Nov</td>
<td>36'019</td>
<td>23</td>
<td>229</td>
<td>728</td>
<td>802</td>
<td>909</td>
</tr>
<tr>
<td>Dec</td>
<td>54'438</td>
<td>16</td>
<td>155</td>
<td>492</td>
<td>542</td>
<td>614</td>
</tr>
<tr>
<td>Total</td>
<td>275'283</td>
<td>589</td>
<td>5'886</td>
<td>18'718</td>
<td>20'602</td>
<td>23'368</td>
</tr>
</tbody>
</table>
HEAT DEMAND AND SOLAR HEAT PRODUCTION PER SOLAR THERMAL 35,000 m² COLLECTOR AREA

[Graph showing heat demand and solar thermal production over 12 months, with demand in blue bars and solar thermal production in orange line.]

Dr. Romanas Savickas
• The required site area for installation of 10,000 m² of solar thermal collector panels is about 18,000 m².

• The solar thermal collector area of 35,000 m² requires about 62,000 m² of site area.

Solar Thermal Panels Installation

<table>
<thead>
<tr>
<th></th>
<th>10,000 m²</th>
<th>35,000 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total solar collector area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar collector length</td>
<td>5.97 m</td>
<td>5.97 m</td>
</tr>
<tr>
<td>Row distance</td>
<td>4 m</td>
<td>4 m</td>
</tr>
<tr>
<td>Ground area</td>
<td>23.88 m²</td>
<td>23.88 m²</td>
</tr>
<tr>
<td>Required land area</td>
<td>18,000 m²</td>
<td>62,000 m²</td>
</tr>
</tbody>
</table>
LAND AVAILABILITY IN CERAK POWER PLANT

- The site area of the Cerak heat plant is about 82,000 m²;
- The area of the main facilities including boilers, oil tanks and management/control building is about 44,000 m²;
- The remaining site area can be estimated to be about 38,000 m².
- This area is enough for 10,000 m² of solar thermal collector panels installation (land of 18,000 m²), but for 35,000 m² solar collectors area (land of 62,000 m²) requires additional area outside power plant.
FINANCIAL ANALYSIS OF SOLAR THERMAL INSTALLATION IN CERAK POWER PLANT

• For the installation of the 10,000 m² solar thermal collectors is necessary 2,5 mln. Eur CAPEX. (without thermal storage, land and transmission line).

• OPEX makes 14,500 Eur per year;

• IRR makes 8,5 %;

• Payback 10 years (3% interest).
Thank You