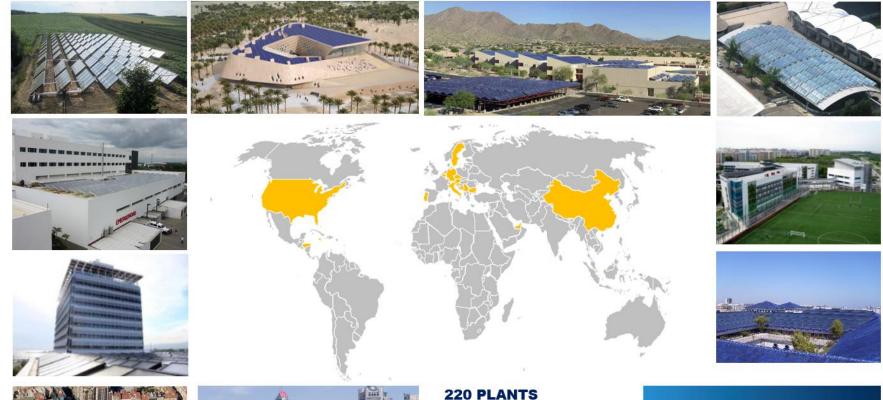


Large solar thermal projects in Bor and Pancevo – green energy at lower costs than fossil fuels


SOLID Solar Energy Systems GmbH

Hrvoje Milosevic & Patrick Reiter Belgrade, 03 - 06.12.2019

220 PLANTS IN 20 CONTRIES 25 YEARS OF EXPERIENCE IN LARGE SOLAR THERMAL SYSTEMS

Our Mission:

We make a significant contribution to making solar thermal energy a natural element of global energy supply.

On-site collector test

10 different types of collectors from 7 manufacturers

- HT-flat plate collectors (foil / doubleglas)
- Vacuum-tube collectors
- Concentracting collectors

Funded by:

European Bank of Reconstruction

and Development

In Cooperation with:

PPP Investment Ltd.

Belgrade

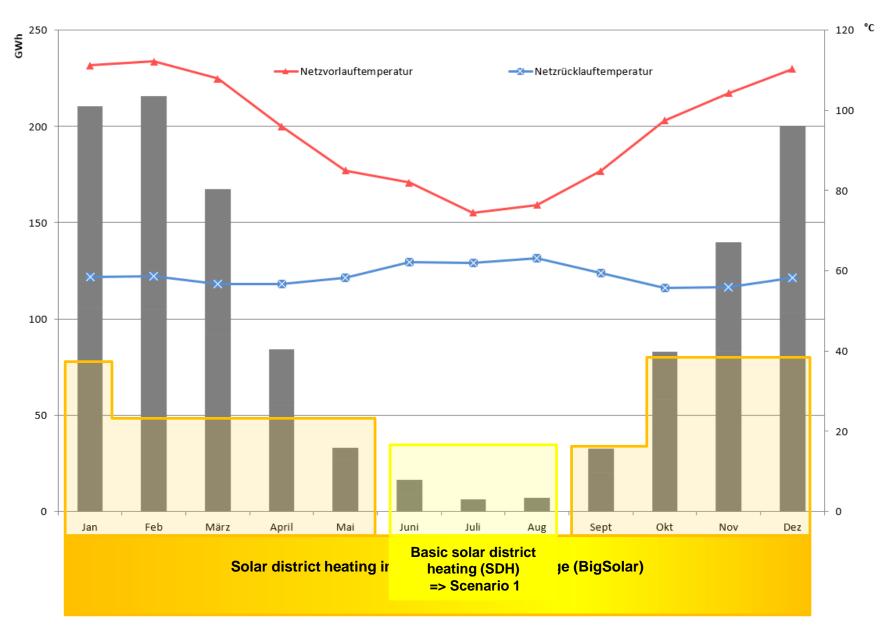
Project leader:

SOLID Austria

Status of Big Solar today

- Development ongoing to adapt storages to regional geology and improve invesmtent/cost ratio
- Modern district heating system with low supply/return temperatures
- Use of areas with restricted possibilities for collectors (former land fill, side areas of traffic, water protection area, ...)
- Full integration in DH- system with multivalent use of storage – peaks shaveings
- Replacing fossil fuels CO2 Benefit
- Summer operation

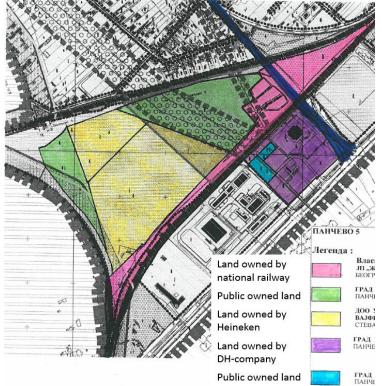
Overview



Aim:

Assess and compare the <u>most promising solutions</u>, <u>sites</u> and <u>scenarios</u> for implementing large-scale solar district heating (BigSolar) systems incl. seasonal storage in the cities of Pancevo and Bor, Serbia

Identification of Scenarios



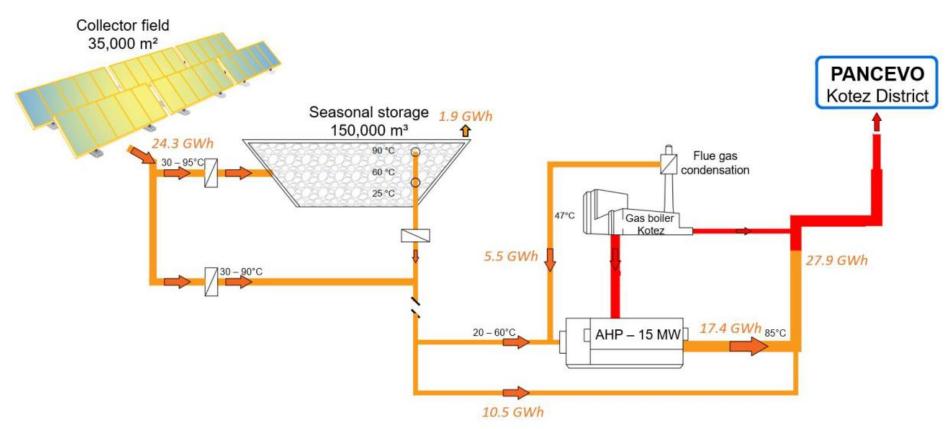
Boundary conditions: free available land and Section Solar Energy Systems GmbH

- Land properties on the triangle:
 - green (public) + yellow(Brewery Heineken) = 10.7 ha
 - pink (railway) incl. 25m on each side for railway extension
 - => BC used for analysis = 10 ha
- Groundwater depth: 3 meter
- Easy connection to HP Ktez

Average price of natural gas per year							
2016	2017	2018	2019	Unit			
33.05	29.71	35.24	41.03	RSD/m3			
0.28	0.25	0.30	0.35	EUR/m3			
0.03	0.03	0.04	0.04	EUR/kWh			
34.37	30.90	36.65	42.67	EUR/MWh			

Thermal power of the natural gas	9.26	kWh/m3
Efficiency of boilers at Kotez	88%	
Thermal power after burning	8.149	kWh/m3
Reference price (average of 4		
years incl. Boiler efficiency)	36.15	EUR/MWh

Techno-economic optimum



	Collector/	30,000 m ²	35,000 m²	40,000 m ²
	Storage	25	27	20
AHP 10 MW	100,000 m ³	35	37	39
	125,000 m ³	34	35	38
	150,000 m ³	35	35	37
AHP 15 MW	100,000 m ³	33	35	37
	125,000 m ³	33	33	35
	150,000 m ³	33	32	33
AHP 20 MW	100,000 m ³	33	33	35
	125,000 m ³	32	32	33
	150,000 m ³	33	32	32
AHP 25 MW	100,000 m ³	32	33	34
	125,000 m ³	32	31	32
	150,000 m ³	32	31	31
AHP 30 MW	100,000 m ³	32	33	34
	125,000 m ³	32	31	32
	150,000 m ³	32	31	31

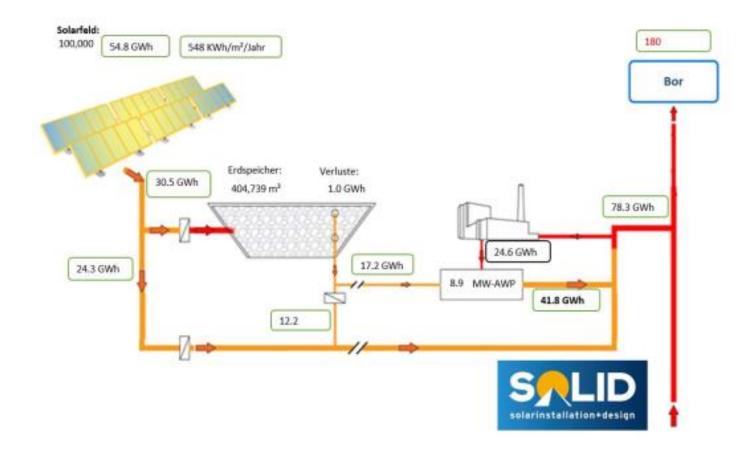
AHP size limited due to capacity of current natural gas boiler!

Estimated heat production by BigSolar



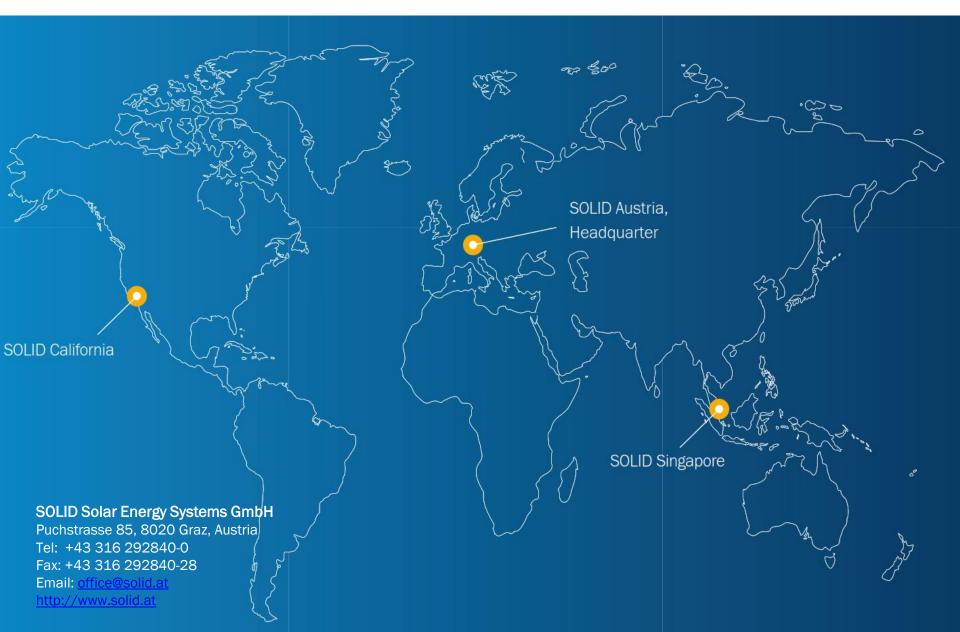
Flue Gas Condensation	1,313	1,034	/20	382	Э	U	U	U	U	U	011	1,240
Solar heat via HP	3,858.4	2,136.2	1,776.8	1,036.5	20.9	0.0	0.0	0.0	0.0	0.0	0.0	3,117.3
Solar heat - direct	0	0	0	0	449	534	528	446	576	5,086	2,838	0
Natural Gas	13,150	10,537	7,260	3,819	51	0	0	0	0	0	8,166	12,460
Gas per day currently	596	494	318	176	17	18	17	14	19	164	397	547
Gas per day BigSolar+ Flue gas	424.2	376.3	234.2	127.3	1.6	0.0	0.0	0.0	0.0	0.0	272.2	401.9

About Bor District Heating


Load profile of DH Bor

DH grid and potential sites

Preliminary results for Bor


Phases for successful project implementation and current status

Concept	Design	Development	Execution	Operation
 (1) Customer needs identification Communication with customer Stakeholder assessment (2) Analysis of DH grid Collection of basic data Consideration of technical, economic and legal boundary conditions (3) Techno-economic evaluation Evaluation of technical optimum design Development of different system design options Estimation of costs and levelized cost of heat (4) Location assessment Potential land analysis Definition of favorable land for different system design options 	 (1) System design Execution of static system simulation model Elaboration of system integration options (2) Land investigation Definition of best suited land Analysis of geo- & hydrogeological conditions Clarification of land dedication & ownership (3) Economic and financial analysis Dynamic financial analysis & Sensitivity analysis Comparison to current heat generation options (4) Investigation of legal aspects Check of legal framework conditions (e.g. environmental, fauna, construction,) Check of possible tender requirements (5) Definition of business model Risk analysis & Due Diligence Elaboration of PR-activities 	 (1) Detailed system design Execution of dynamic system simulation model Layout design for components & system integration Hydraulic concept (2) Detailed economic and financial analysis Detailed breakdown of costs (CAPEX & OPEX) & financial analysis Elaboration of tariff structure for ESC (3) Land acquisition Geo- & hydrogeological assessment for construction Communication with land owners Preparation and signing of land contracts (4) Authority procedures Provision of relevant legal aspects for construction & operation Obtainment of permits for construction generation Elaboration of detailed project implementation plan Elaboration of plan 	 (1) Project management Coordination Supervision Communication Quality, time, cost & risk management Change control reporting (2) Procurement Purchase and delivery of components (3) Construction Construction of defined BSx-system (4) Commissioning ✓ Commissioning of defined BSx-system ✓ Transfer to operating consortium 	 (1) Plant Operation Supervising plants operation Ensuring efficient, effective and safe operation of the plant Safety & risk management Supervise automatic system control (2) Maintenance Scheduled and preventive maintenance of system Functional checks Servicing Keep equipment ready for operation (3) Monitoring & Visualization Monitoring system Interactive data visualization Statistical graphics Visualize performance indicators and trends Failure detection & fault diagnosis (4) Optimization Detailed monitoring for optimization & product development Data analysis for optimization Control systems engineering Improve automatic control systems
	\bigcirc			

Thank you for your attention!

